Mister Exam

Other calculators

Sum of series k/2^k



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \    k 
  \   --
  /    k
 /    2 
/___,   
n = 1   
$$\sum_{n=1}^{\infty} \frac{k}{2^{k}}$$
Sum(k/2^k, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{k}{2^{k}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 2^{- k} k$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
      -k
oo*k*2  
$$\infty 2^{- k} k$$
oo*k*2^(-k)

    Examples of finding the sum of a series