Mister Exam

Other calculators

Sum of series k/2^k



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \    k 
  \   --
  /    k
 /    2 
/___,   
n = 1   
n=1k2k\sum_{n=1}^{\infty} \frac{k}{2^{k}}
Sum(k/2^k, (n, 1, oo))
The radius of convergence of the power series
Given number:
k2k\frac{k}{2^{k}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=2kka_{n} = 2^{- k} k
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
      -k
oo*k*2  
2kk\infty 2^{- k} k
oo*k*2^(-k)

    Examples of finding the sum of a series