Mister Exam

Other calculators


5/((5n-2)*(5n+3))

Sum of series 5/((5n-2)*(5n+3))



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \            5         
   )  -------------------
  /   (5*n - 2)*(5*n + 3)
 /__,                    
n = 1                    
n=15(5n2)(5n+3)\sum_{n=1}^{\infty} \frac{5}{\left(5 n - 2\right) \left(5 n + 3\right)}
Sum(5/(((5*n - 2)*(5*n + 3))), (n, 1, oo))
The radius of convergence of the power series
Given number:
5(5n2)(5n+3)\frac{5}{\left(5 n - 2\right) \left(5 n + 3\right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=5(5n2)(5n+3)a_{n} = \frac{5}{\left(5 n - 2\right) \left(5 n + 3\right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((5n+8)15n2)1 = \lim_{n \to \infty}\left(\left(5 n + 8\right) \left|{\frac{1}{5 n - 2}}\right|\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.20.4
The answer [src]
5*Gamma(13/5)
-------------
24*Gamma(8/5)
5Γ(135)24Γ(85)\frac{5 \Gamma\left(\frac{13}{5}\right)}{24 \Gamma\left(\frac{8}{5}\right)}
5*gamma(13/5)/(24*gamma(8/5))
Numerical answer [src]
0.333333333333333333333333333333
0.333333333333333333333333333333
The graph
Sum of series 5/((5n-2)*(5n+3))

    Examples of finding the sum of a series