Mister Exam

Other calculators


(4)/4n-3*4n+1

Sum of series (4)/4n-3*4n+1



=

The solution

You have entered [src]
  oo                    
 __                     
 \ `                    
  )   (1.0*n - 12*n + 1)
 /_,                    
n = 1                   
$$\sum_{n=1}^{\infty} \left(\left(- 12 n + 1.0 n\right) + 1\right)$$
Sum(1.0*n - 12*n + 1, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\left(- 12 n + 1 n\right) + 1$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 1 - 11 n$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{11 n - 1}\right|}{11 n + 10}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
-oo
$$-\infty$$
-oo
Numerical answer
The series diverges
The graph
Sum of series (4)/4n-3*4n+1

    Examples of finding the sum of a series