Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • ((n^3+3n+1)^(1/2))arcsin(2/n^3)
  • 3/((n+2)^2-1) 3/((n+2)^2-1)
  • tan(pi/(4*n)) tan(pi/(4*n))
  • arctg(n)/(1+n^2) arctg(n)/(1+n^2)
  • Identical expressions

  • five thousand, seven hundred and thirteen ^(two *x)/(five thousand, seven hundred and thirteen + five thousand, seven hundred and thirteen ^(two *x))
  • 5713 to the power of (2 multiply by x) divide by (5713 plus 5713 to the power of (2 multiply by x))
  • five thousand, seven hundred and thirteen to the power of (two multiply by x) divide by (five thousand, seven hundred and thirteen plus five thousand, seven hundred and thirteen to the power of (two multiply by x))
  • 5713(2*x)/(5713+5713(2*x))
  • 57132*x/5713+57132*x
  • 5713^(2x)/(5713+5713^(2x))
  • 5713(2x)/(5713+5713(2x))
  • 57132x/5713+57132x
  • 5713^2x/5713+5713^2x
  • 5713^(2*x) divide by (5713+5713^(2*x))
  • Similar expressions

  • 5713^(2*x)/(5713-5713^(2*x))

Sum of series 5713^(2*x)/(5713+5713^(2*x))



=

The solution

You have entered [src]
 5713               
____                
\   `               
 \           2*x    
  \      5713       
   )  --------------
  /              2*x
 /    5713 + 5713   
/___,               
n = 0               
$$\sum_{n=0}^{5713} \frac{5713^{2 x}}{5713^{2 x} + 5713}$$
Sum(5713^(2*x)/(5713 + 5713^(2*x)), (n, 0, 5713))
The answer [src]
          2*x 
 5714*5713    
--------------
           2*x
5713 + 5713   
$$\frac{5714 \cdot 5713^{2 x}}{5713^{2 x} + 5713}$$
5714*5713^(2*x)/(5713 + 5713^(2*x))

    Examples of finding the sum of a series