Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 9/(9n^2+3n-20) 9/(9n^2+3n-20)
  • 0.5^n 0.5^n
  • 56724.3*10^-1 56724.3*10^-1
  • 1/(sqrt(k^4+7k^2+20))
  • Identical expressions

  • five thousand, seven hundred and thirteen ^(2n/ five thousand, seven hundred and thirteen)/ five thousand, seven hundred and thirteen + five thousand, seven hundred and thirteen ^(2x/ five thousand, seven hundred and thirteen)
  • 5713 to the power of (2n divide by 5713) divide by 5713 plus 5713 to the power of (2x divide by 5713)
  • five thousand, seven hundred and thirteen to the power of (2n divide by five thousand, seven hundred and thirteen) divide by five thousand, seven hundred and thirteen plus five thousand, seven hundred and thirteen to the power of (2x divide by five thousand, seven hundred and thirteen)
  • 5713(2n/5713)/5713+5713(2x/5713)
  • 57132n/5713/5713+57132x/5713
  • 5713^2n/5713/5713+5713^2x/5713
  • 5713^(2n divide by 5713) divide by 5713+5713^(2x divide by 5713)
  • Similar expressions

  • 5713^(2n/5713)/5713-5713^(2x/5713)

Sum of series 5713^(2n/5713)/5713+5713^(2x/5713)



=

The solution

You have entered [src]
 5713                       
_____                       
\    `                      
 \     /    2*n            \
  \    |    ----       2*x |
   \   |    5713       ----|
   /   |5713           5713|
  /    |-------- + 5713    |
 /     \  5713             /
/____,                      
n = 0                       
$$\sum_{n=0}^{5713} \left(\frac{5713^{\frac{2 n}{5713}}}{5713} + 5713^{\frac{2 x}{5713}}\right)$$
Sum(5713^((2*n)/5713)/5713 + 5713^((2*x)/5713), (n, 0, 5713))
The answer [src]
         2*x                           
         ----                    2/5713
         5713   1 - 32638369*5713      
5714*5713     + -----------------------
                      /        2/5713\ 
                 5713*\1 - 5713      / 
$$5714 \cdot 5713^{\frac{2 x}{5713}} + \frac{1 - 32638369 \cdot 5713^{\frac{2}{5713}}}{5713 \left(1 - 5713^{\frac{2}{5713}}\right)}$$
5714*5713^(2*x/5713) + (1 - 32638369*5713^(2/5713))/(5713*(1 - 5713^(2/5713)))

    Examples of finding the sum of a series