Mister Exam

Other calculators


factorial(n)/(n+1)

Sum of series factorial(n)/(n+1)



=

The solution

You have entered [src]
  oo       
 ___       
 \  `      
  \     n! 
   )  -----
  /   n + 1
 /__,      
n = 1      
n=1n!n+1\sum_{n=1}^{\infty} \frac{n!}{n + 1}
Sum(factorial(n)/(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
n!n+1\frac{n!}{n + 1}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n!n+1a_{n} = \frac{n!}{n + 1}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+2)n!(n+1)!n+1)1 = \lim_{n \to \infty}\left(\frac{\left(n + 2\right) \left|{\frac{n!}{\left(n + 1\right)!}}\right|}{n + 1}\right)
Let's take the limit
we find
False

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.501000
Numerical answer
The series diverges
The graph
Sum of series factorial(n)/(n+1)

    Examples of finding the sum of a series