Mister Exam

Other calculators


factorial(n)/((n*n))

Sum of series factorial(n)/((n*n))



=

The solution

You have entered [src]
  oo     
 ___     
 \  `    
  \    n!
   )  ---
  /   n*n
 /__,    
n = 1    
n=1n!nn\sum_{n=1}^{\infty} \frac{n!}{n n}
Sum(factorial(n)/((n*n)), (n, 1, oo))
The radius of convergence of the power series
Given number:
n!nn\frac{n!}{n n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n!n2a_{n} = \frac{n!}{n^{2}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)2n!(n+1)!n2)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{2} \left|{\frac{n!}{\left(n + 1\right)!}}\right|}{n^{2}}\right)
Let's take the limit
we find
False

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50200
The answer [src]
  oo    
____    
\   `   
 \    n!
  \   --
  /    2
 /    n 
/___,   
n = 1   
n=1n!n2\sum_{n=1}^{\infty} \frac{n!}{n^{2}}
Sum(factorial(n)/n^2, (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series factorial(n)/((n*n))

    Examples of finding the sum of a series