Mister Exam

Other calculators


cos(pin)/(n-1)

Sum of series cos(pin)/(n-1)



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \   cos(pi*n)
   )  ---------
  /     n - 1  
 /__,          
n = 1          
n=1cos(πn)n1\sum_{n=1}^{\infty} \frac{\cos{\left(\pi n \right)}}{n - 1}
Sum(cos(pi*n)/(n - 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
cos(πn)n1\frac{\cos{\left(\pi n \right)}}{n - 1}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=cos(πn)n1a_{n} = \frac{\cos{\left(\pi n \right)}}{n - 1}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(ncos(πn)(n1)cos(π(n+1)))1 = \lim_{n \to \infty}\left(n \left|{\frac{\cos{\left(\pi n \right)}}{\left(n - 1\right) \cos{\left(\pi \left(n + 1\right) \right)}}}\right|\right)
Let's take the limit
we find
1=limn(ncos(πn)(n1)cos(π(n+1)))1 = \lim_{n \to \infty}\left(n \left|{\frac{\cos{\left(\pi n \right)}}{\left(n - 1\right) \cos{\left(\pi \left(n + 1\right) \right)}}}\right|\right)
False
The rate of convergence of the power series
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
Numerical answer [src]
Sum(cos(pi*n)/(n - 1), (n, 1, oo))
Sum(cos(pi*n)/(n - 1), (n, 1, oo))
The graph
Sum of series cos(pin)/(n-1)

    Examples of finding the sum of a series