Mister Exam

Other calculators


cos(npi*2)/n^4
  • How to use it?

  • Sum of series:
  • cos(2n)/n^2 cos(2n)/n^2
  • factorial(n)^2/factorial(k^n)
  • 3^(n-1)/7^n 3^(n-1)/7^n
  • cos(npi*2)/n^4 cos(npi*2)/n^4
  • Identical expressions

  • cos(npi* two)/n^ four
  • co sinus of e of (n Pi multiply by 2) divide by n to the power of 4
  • co sinus of e of (n Pi multiply by two) divide by n to the power of four
  • cos(npi*2)/n4
  • cosnpi*2/n4
  • cos(npi*2)/n⁴
  • cos(npi2)/n^4
  • cos(npi2)/n4
  • cosnpi2/n4
  • cosnpi2/n^4
  • cos(npi*2) divide by n^4

Sum of series cos(npi*2)/n^4



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \    cos(n*pi*2)
  \   -----------
  /         4    
 /         n     
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \frac{\cos{\left(2 \pi n \right)}}{n^{4}}$$
Sum(cos((n*pi)*2)/n^4, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\cos{\left(2 \pi n \right)}}{n^{4}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\cos{\left(2 \pi n \right)}}{n^{4}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{4} \left|{\frac{\cos{\left(2 \pi n \right)}}{\cos{\left(\pi \left(2 n + 2\right) \right)}}}\right|}{n^{4}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo             
____             
\   `            
 \    cos(2*pi*n)
  \   -----------
  /         4    
 /         n     
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \frac{\cos{\left(2 \pi n \right)}}{n^{4}}$$
Sum(cos(2*pi*n)/n^4, (n, 1, oo))
The graph
Sum of series cos(npi*2)/n^4

    Examples of finding the sum of a series