Mister Exam

Sum of series arctg1/n



=

The solution

You have entered [src]
  oo         
 ___         
 \  `        
  \   atan(1)
   )  -------
  /      n   
 /__,        
n = 1        
$$\sum_{n=1}^{\infty} \frac{\operatorname{atan}{\left(1 \right)}}{n}$$
Sum(atan(1)/n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\operatorname{atan}{\left(1 \right)}}{n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\pi}{4 n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n + 1}{n}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer [src]
0.e+2
0.e+2
The graph
Sum of series arctg1/n

    Examples of finding the sum of a series