Mister Exam

Other calculators


arctg(1/n^(1/3))
  • How to use it?

  • Sum of series:
  • 6/(n^2-10n+24) 6/(n^2-10n+24)
  • x^n/sqrt(n+1)
  • (n^2)(tg(pi/2)^5) (n^2)(tg(pi/2)^5)
  • (2x-4)
  • Identical expressions

  • arctg(one /n^(one / three))
  • arctg(1 divide by n to the power of (1 divide by 3))
  • arctg(one divide by n to the power of (one divide by three))
  • arctg(1/n(1/3))
  • arctg1/n1/3
  • arctg1/n^1/3
  • arctg(1 divide by n^(1 divide by 3))

Sum of series arctg(1/n^(1/3))



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \        /  1  \
  \   atan|-----|
  /       |3 ___|
 /        \\/ n /
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \operatorname{atan}{\left(\frac{1}{\sqrt[3]{n}} \right)}$$
Sum(atan(1/(n^(1/3))), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\operatorname{atan}{\left(\frac{1}{\sqrt[3]{n}} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \operatorname{atan}{\left(\frac{1}{\sqrt[3]{n}} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\operatorname{atan}{\left(\frac{1}{\sqrt[3]{n}} \right)}}{\operatorname{atan}{\left(\frac{1}{\sqrt[3]{n + 1}} \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo             
____             
\   `            
 \        /  1  \
  \   atan|-----|
  /       |3 ___|
 /        \\/ n /
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \operatorname{atan}{\left(\frac{1}{\sqrt[3]{n}} \right)}$$
Sum(atan(n^(-1/3)), (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series arctg(1/n^(1/3))

    Examples of finding the sum of a series