Mister Exam

Other calculators


arcsin1/sqrt(n)

Sum of series arcsin1/sqrt(n)



=

The solution

You have entered [src]
  oo         
____         
\   `        
 \    asin(1)
  \   -------
  /      ___ 
 /     \/ n  
/___,        
n = 1        
n=1asin(1)n\sum_{n=1}^{\infty} \frac{\operatorname{asin}{\left(1 \right)}}{\sqrt{n}}
Sum(asin(1)/sqrt(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
asin(1)n\frac{\operatorname{asin}{\left(1 \right)}}{\sqrt{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=π2na_{n} = \frac{\pi}{2 \sqrt{n}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(n+1n)1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1}}{\sqrt{n}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5010
The answer [src]
  oo         
____         
\   `        
 \       pi  
  \   -------
  /       ___
 /    2*\/ n 
/___,        
n = 1        
n=1π2n\sum_{n=1}^{\infty} \frac{\pi}{2 \sqrt{n}}
Sum(pi/(2*sqrt(n)), (n, 1, oo))
The graph
Sum of series arcsin1/sqrt(n)

    Examples of finding the sum of a series