Given number:
$$\frac{a^{k}}{k}$$
It is a series of species
$$a_{k} \left(c x - x_{0}\right)^{d k}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{k \to \infty} \left|{\frac{a_{k}}{a_{k + 1}}}\right|}{c}$$
In this case
$$a_{k} = \frac{1}{k}$$
and
$$x_{0} = - a$$
,
$$d = 1$$
,
$$c = 0$$
then
$$R = \tilde{\infty} \left(- a + \lim_{k \to \infty}\left(\frac{k + 1}{k}\right)\right)$$
Let's take the limitwe find
$$R = \tilde{\infty} \left(1 - a\right)$$