Mister Exam

Other calculators


(5n-8)^(4n+1)/(8n)

Sum of series (5n-8)^(4n+1)/(8n)



=

The solution

You have entered [src]
  oo                  
____                  
\   `                 
 \             4*n + 1
  \   (5*n - 8)       
  /   ----------------
 /          8*n       
/___,                 
n = 1                 
$$\sum_{n=1}^{\infty} \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}$$
Sum((5*n - 8)^(4*n + 1)/((8*n)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left|{\left(5 n - 8\right)^{4 n + 1}}\right|}{n \left|{\left(5 n - 3\right)^{4 n + 5}}\right|}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
  oo                   
____                   
\   `                  
 \              1 + 4*n
  \   (-8 + 5*n)       
  /   -----------------
 /           8*n       
/___,                  
n = 1                  
$$\sum_{n=1}^{\infty} \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}$$
Sum((-8 + 5*n)^(1 + 4*n)/(8*n), (n, 1, oo))
The graph
Sum of series (5n-8)^(4n+1)/(8n)

    Examples of finding the sum of a series