Mister Exam

Other calculators


(5n-8)^(4n+1)/(8n)

Sum of series (5n-8)^(4n+1)/(8n)



=

The solution

You have entered [src]
  oo                  
____                  
\   `                 
 \             4*n + 1
  \   (5*n - 8)       
  /   ----------------
 /          8*n       
/___,                 
n = 1                 
n=1(5n8)4n+18n\sum_{n=1}^{\infty} \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}
Sum((5*n - 8)^(4*n + 1)/((8*n)), (n, 1, oo))
The radius of convergence of the power series
Given number:
(5n8)4n+18n\frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(5n8)4n+18na_{n} = \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)(5n8)4n+1n(5n3)4n+5)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left|{\left(5 n - 8\right)^{4 n + 1}}\right|}{n \left|{\left(5 n - 3\right)^{4 n + 5}}\right|}\right)
Let's take the limit
we find
False

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5-5e3910e39
The answer [src]
  oo                   
____                   
\   `                  
 \              1 + 4*n
  \   (-8 + 5*n)       
  /   -----------------
 /           8*n       
/___,                  
n = 1                  
n=1(5n8)4n+18n\sum_{n=1}^{\infty} \frac{\left(5 n - 8\right)^{4 n + 1}}{8 n}
Sum((-8 + 5*n)^(1 + 4*n)/(8*n), (n, 1, oo))
The graph
Sum of series (5n-8)^(4n+1)/(8n)

    Examples of finding the sum of a series