Mister Exam

Other calculators

Sum of series 2x-6



=

The solution

You have entered [src]
  oo           
 __            
 \ `           
  )   (2*x - 6)
 /_,           
n = 1          
n=1(2x6)\sum_{n=1}^{\infty} \left(2 x - 6\right)
Sum(2*x - 6, (n, 1, oo))
The radius of convergence of the power series
Given number:
2x62 x - 6
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=2x6a_{n} = 2 x - 6
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo*(-6 + 2*x)
(2x6)\infty \left(2 x - 6\right)
oo*(-6 + 2*x)

    Examples of finding the sum of a series