Let's highlight the perfect square of the square three-member $$\left(- q^{4} - 4 q^{2}\right) + 5$$ To do this, let's use the formula $$a q^{4} + b q^{2} + c = a \left(m + q^{2}\right)^{2} + n$$ where $$m = \frac{b}{2 a}$$ $$n = \frac{4 a c - b^{2}}{4 a}$$ In this case $$a = -1$$ $$b = -4$$ $$c = 5$$ Then $$m = 2$$ $$n = 9$$ So, $$9 - \left(q^{2} + 2\right)^{2}$$