The perfect square
Let's highlight the perfect square of the square three-member
$$4 b^{2} + \left(b x + x^{2}\right)$$
Let us write down the identical expression
$$4 b^{2} + \left(b x + x^{2}\right) = \frac{15 x^{2}}{16} + \left(4 b^{2} + b x + \frac{x^{2}}{16}\right)$$
or
$$4 b^{2} + \left(b x + x^{2}\right) = \frac{15 x^{2}}{16} + \left(2 b + \frac{x}{4}\right)^{2}$$
/ / ____\\ / / ____\\
| x*\-1 + I*\/ 15 /| | x*\1 + I*\/ 15 /|
|b - -----------------|*|b + ----------------|
\ 8 / \ 8 /
$$\left(b - \frac{x \left(-1 + \sqrt{15} i\right)}{8}\right) \left(b + \frac{x \left(1 + \sqrt{15} i\right)}{8}\right)$$
(b - x*(-1 + i*sqrt(15))/8)*(b + x*(1 + i*sqrt(15))/8)
General simplification
[src]
$$4 b^{2} + b x + x^{2}$$
Rational denominator
[src]
$$4 b^{2} + b x + x^{2}$$
$$4 b^{2} + b x + x^{2}$$
$$4 b^{2} + b x + x^{2}$$
Assemble expression
[src]
$$4 b^{2} + b x + x^{2}$$
$$4 b^{2} + b x + x^{2}$$
$$4 b^{2} + b x + x^{2}$$
Combining rational expressions
[src]
$$4 b^{2} + x \left(b + x\right)$$