Mister Exam

Factor x^2-2*x+12 squared

An expression to simplify:

The solution

You have entered [src]
 2           
x  - 2*x + 12
$$\left(x^{2} - 2 x\right) + 12$$
x^2 - 2*x + 12
Factorization [src]
/             ____\ /             ____\
\x + -1 + I*\/ 11 /*\x + -1 - I*\/ 11 /
$$\left(x + \left(-1 - \sqrt{11} i\right)\right) \left(x + \left(-1 + \sqrt{11} i\right)\right)$$
(x - 1 + i*sqrt(11))*(x - 1 - i*sqrt(11))
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - 2 x\right) + 12$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -2$$
$$c = 12$$
Then
$$m = -1$$
$$n = 11$$
So,
$$\left(x - 1\right)^{2} + 11$$
General simplification [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Rational denominator [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Numerical answer [src]
12.0 + x^2 - 2.0*x
12.0 + x^2 - 2.0*x
Combinatorics [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Assemble expression [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Common denominator [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Combining rational expressions [src]
12 + x*(-2 + x)
$$x \left(x - 2\right) + 12$$
12 + x*(-2 + x)
Powers [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x
Trigonometric part [src]
      2      
12 + x  - 2*x
$$x^{2} - 2 x + 12$$
12 + x^2 - 2*x