Mister Exam

Factor -x^2+x+15 squared

An expression to simplify:

The solution

You have entered [src]
   2         
- x  + x + 15
$$\left(- x^{2} + x\right) + 15$$
-x^2 + x + 15
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- x^{2} + x\right) + 15$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 1$$
$$c = 15$$
Then
$$m = - \frac{1}{2}$$
$$n = \frac{61}{4}$$
So,
$$\frac{61}{4} - \left(x - \frac{1}{2}\right)^{2}$$
General simplification [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Factorization [src]
/            ____\ /            ____\
|      1   \/ 61 | |      1   \/ 61 |
|x + - - + ------|*|x + - - - ------|
\      2     2   / \      2     2   /
$$\left(x + \left(- \frac{1}{2} + \frac{\sqrt{61}}{2}\right)\right) \left(x + \left(- \frac{\sqrt{61}}{2} - \frac{1}{2}\right)\right)$$
(x - 1/2 + sqrt(61)/2)*(x - 1/2 - sqrt(61)/2)
Trigonometric part [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Assemble expression [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Rational denominator [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Common denominator [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Numerical answer [src]
15.0 + x - x^2
15.0 + x - x^2
Combining rational expressions [src]
15 + x*(1 - x)
$$x \left(1 - x\right) + 15$$
15 + x*(1 - x)
Powers [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2
Combinatorics [src]
          2
15 + x - x 
$$- x^{2} + x + 15$$
15 + x - x^2