General simplification
[src]
5 2 4
314800 - 2916*n + 709164*n + 1589787*n + 2834352*n
-------------------------------------------------------------
2 4 5 3
157400 - 1417032*n - 972*n + 1458*n + 472488*n + 531225*n
$$\frac{- 2916 n^{5} + 1589787 n^{4} + 709164 n^{2} + 2834352 n + 314800}{1458 n^{5} - 972 n^{4} + 531225 n^{3} - 1417032 n^{2} + 472488 n + 157400}$$
(314800 - 2916*n^5 + 709164*n^2 + 1589787*n^4 + 2834352*n)/(157400 - 1417032*n^2 - 972*n^4 + 1458*n^5 + 472488*n + 531225*n^3)
Fraction decomposition
[src]
-2 - 12/(-2 + 3*n) + 19675*(2 + 3*n)*(4 + 6*n + 9*n^2)/(-78700 - 354294*n + 486*n^4 + 177075*n^2)
$$\frac{19675 \left(3 n + 2\right) \left(9 n^{2} + 6 n + 4\right)}{486 n^{4} + 177075 n^{2} - 354294 n - 78700} - 2 - \frac{12}{3 n - 2}$$
/ 2\
12 19675*(2 + 3*n)*\4 + 6*n + 9*n /
-2 - -------- + --------------------------------------
-2 + 3*n 4 2
-78700 - 354294*n + 486*n + 177075*n
-(8.0 + 6.0*n)/(-2.0 + 3.0*n) + (2.0 + 3.0*n)/((-2.0 + 3.0*n)*(-1/(-2.0 + 3.0*n) + 0.000914866581956798*n + 6.0*n/(4.0 + 6.0*n + 9.0*n^2)))
-(8.0 + 6.0*n)/(-2.0 + 3.0*n) + (2.0 + 3.0*n)/((-2.0 + 3.0*n)*(-1/(-2.0 + 3.0*n) + 0.000914866581956798*n + 6.0*n/(4.0 + 6.0*n + 9.0*n^2)))
8 + 6*n 2 + 3*n
- -------- + ------------------------------------------------
-2 + 3*n / 1 18*n 6*n \
(-2 + 3*n)*|- -------- + ----- + --------------|
| -2 + 3*n 19675 2|
\ 4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
Rational denominator
[src]
4 6 5 2 3 2 2 3 2 2 2
-1259200 - 4724304*n - 3179574*n - 8748*n - 5832*n + 157400*(-2 + 3*n) + 4252392*n + 8501328*n + 472200*n*(-2 + 3*n) + 531225*n *(-2 + 3*n) + 708300*n *(-2 + 3*n)
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2 / 4 2\
(-2 + 3*n) *\-78700 - 354294*n + 486*n + 177075*n /
$$\frac{- 8748 n^{6} - 5832 n^{5} - 3179574 n^{4} + 531225 n^{3} \left(3 n - 2\right)^{2} + 4252392 n^{3} + 708300 n^{2} \left(3 n - 2\right)^{2} + 8501328 n^{2} + 472200 n \left(3 n - 2\right)^{2} - 4724304 n + 157400 \left(3 n - 2\right)^{2} - 1259200}{\left(3 n - 2\right)^{2} \left(486 n^{4} + 177075 n^{2} - 354294 n - 78700\right)}$$
(-1259200 - 4724304*n - 3179574*n^4 - 8748*n^6 - 5832*n^5 + 157400*(-2 + 3*n)^2 + 4252392*n^3 + 8501328*n^2 + 472200*n*(-2 + 3*n)^2 + 531225*n^3*(-2 + 3*n)^2 + 708300*n^2*(-2 + 3*n)^2)/((-2 + 3*n)^2*(-78700 - 354294*n + 486*n^4 + 177075*n^2))
Assemble expression
[src]
8 + 6*n 2 + 3*n
- -------- + ------------------------------------------------
-2 + 3*n / 1 18*n 6*n \
(-2 + 3*n)*|- -------- + ----- + --------------|
| -2 + 3*n 19675 2|
\ 4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
/ 4 2 5\
-\-314800 - 2834352*n - 1589787*n - 709164*n + 2916*n /
----------------------------------------------------------
/ 4 2\
(-2 + 3*n)*\-78700 - 354294*n + 486*n + 177075*n /
$$- \frac{2916 n^{5} - 1589787 n^{4} - 709164 n^{2} - 2834352 n - 314800}{\left(3 n - 2\right) \left(486 n^{4} + 177075 n^{2} - 354294 n - 78700\right)}$$
-(-314800 - 2834352*n - 1589787*n^4 - 709164*n^2 + 2916*n^5)/((-2 + 3*n)*(-78700 - 354294*n + 486*n^4 + 177075*n^2))
Combining rational expressions
[src]
-2*(4 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))) + 19675*(-2 + 3*n)*(2 + 3*n)*(4 + 3*n*(2 + 3*n))
-----------------------------------------------------------------------------------------------------------------------------------
(-2 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n)))
$$\frac{19675 \left(3 n - 2\right) \left(3 n + 2\right) \left(3 n \left(3 n + 2\right) + 4\right) - 2 \left(3 n + 4\right) \left(6 n \left(3 n - 2\right) \left(9 n \left(3 n + 2\right) + 19687\right) - 59025 n \left(3 n + 2\right) - 78700\right)}{\left(3 n - 2\right) \left(6 n \left(3 n - 2\right) \left(9 n \left(3 n + 2\right) + 19687\right) - 59025 n \left(3 n + 2\right) - 78700\right)}$$
(-2*(4 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))) + 19675*(-2 + 3*n)*(2 + 3*n)*(4 + 3*n*(2 + 3*n)))/((-2 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))))
-8 - 6*n 2 + 3*n
-------- + ------------------------------------------------
-2 + 3*n / 1 18*n 6*n \
(-2 + 3*n)*|- -------- + ----- + --------------|
| -2 + 3*n 19675 2|
\ 4 + 6*n + 9*n /
$$\frac{- 6 n - 8}{3 n - 2} + \frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)}$$
8 + 6*n 2 + 3*n
- -------- + ------------------------------------------------
-2 + 3*n / 1 18*n 6*n \
(-2 + 3*n)*|- -------- + ----- + --------------|
| -2 + 3*n 19675 2|
\ 4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
2 3 4
629600 - 2124900*n + 1062450*n + 1587843*n + 3779328*n
-2 + -------------------------------------------------------------
2 4 5 3
157400 - 1417032*n - 972*n + 1458*n + 472488*n + 531225*n
$$\frac{1587843 n^{4} + 1062450 n^{3} - 2124900 n^{2} + 3779328 n + 629600}{1458 n^{5} - 972 n^{4} + 531225 n^{3} - 1417032 n^{2} + 472488 n + 157400} - 2$$
-2 + (629600 - 2124900*n^2 + 1062450*n^3 + 1587843*n^4 + 3779328*n)/(157400 - 1417032*n^2 - 972*n^4 + 1458*n^5 + 472488*n + 531225*n^3)