Mister Exam

Other calculators

How do you ((3*n+2)/(3*n-2))/(((18*n)/(27^3-8))+((6*n)/(9*n^2+6*n+4))-(1/(3*n-2)))-((6*n+8)/(3*n-2)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
           /3*n + 2\                      
           |-------|                      
           \3*n - 2/               6*n + 8
-------------------------------- - -------
 18*n        6*n            1      3*n - 2
----- + -------------- - -------          
19675      2             3*n - 2          
        9*n  + 6*n + 4                    
$$\frac{\frac{1}{3 n - 2} \left(3 n + 2\right)}{\left(\frac{6 n}{\left(9 n^{2} + 6 n\right) + 4} + \frac{18 n}{19675}\right) - \frac{1}{3 n - 2}} - \frac{6 n + 8}{3 n - 2}$$
((3*n + 2)/(3*n - 2))/((18*n)/19675 + (6*n)/(9*n^2 + 6*n + 4) - 1/(3*n - 2)) - (6*n + 8)/(3*n - 2)
General simplification [src]
                   5           2            4                
    314800 - 2916*n  + 709164*n  + 1589787*n  + 2834352*n    
-------------------------------------------------------------
                  2        4         5                      3
157400 - 1417032*n  - 972*n  + 1458*n  + 472488*n + 531225*n 
$$\frac{- 2916 n^{5} + 1589787 n^{4} + 709164 n^{2} + 2834352 n + 314800}{1458 n^{5} - 972 n^{4} + 531225 n^{3} - 1417032 n^{2} + 472488 n + 157400}$$
(314800 - 2916*n^5 + 709164*n^2 + 1589787*n^4 + 2834352*n)/(157400 - 1417032*n^2 - 972*n^4 + 1458*n^5 + 472488*n + 531225*n^3)
Fraction decomposition [src]
-2 - 12/(-2 + 3*n) + 19675*(2 + 3*n)*(4 + 6*n + 9*n^2)/(-78700 - 354294*n + 486*n^4 + 177075*n^2)
$$\frac{19675 \left(3 n + 2\right) \left(9 n^{2} + 6 n + 4\right)}{486 n^{4} + 177075 n^{2} - 354294 n - 78700} - 2 - \frac{12}{3 n - 2}$$
                                   /             2\   
        12         19675*(2 + 3*n)*\4 + 6*n + 9*n /   
-2 - -------- + --------------------------------------
     -2 + 3*n                            4           2
                -78700 - 354294*n + 486*n  + 177075*n 
Numerical answer [src]
-(8.0 + 6.0*n)/(-2.0 + 3.0*n) + (2.0 + 3.0*n)/((-2.0 + 3.0*n)*(-1/(-2.0 + 3.0*n) + 0.000914866581956798*n + 6.0*n/(4.0 + 6.0*n + 9.0*n^2)))
-(8.0 + 6.0*n)/(-2.0 + 3.0*n) + (2.0 + 3.0*n)/((-2.0 + 3.0*n)*(-1/(-2.0 + 3.0*n) + 0.000914866581956798*n + 6.0*n/(4.0 + 6.0*n + 9.0*n^2)))
Trigonometric part [src]
  8 + 6*n                        2 + 3*n                     
- -------- + ------------------------------------------------
  -2 + 3*n              /     1        18*n        6*n      \
             (-2 + 3*n)*|- -------- + ----- + --------------|
                        |  -2 + 3*n   19675                2|
                        \                     4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
Rational denominator [src]
                                4         6         5                    2            3            2                      2           3           2           2           2
-1259200 - 4724304*n - 3179574*n  - 8748*n  - 5832*n  + 157400*(-2 + 3*n)  + 4252392*n  + 8501328*n  + 472200*n*(-2 + 3*n)  + 531225*n *(-2 + 3*n)  + 708300*n *(-2 + 3*n) 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                      2 /                         4           2\                                                           
                                                            (-2 + 3*n) *\-78700 - 354294*n + 486*n  + 177075*n /                                                           
$$\frac{- 8748 n^{6} - 5832 n^{5} - 3179574 n^{4} + 531225 n^{3} \left(3 n - 2\right)^{2} + 4252392 n^{3} + 708300 n^{2} \left(3 n - 2\right)^{2} + 8501328 n^{2} + 472200 n \left(3 n - 2\right)^{2} - 4724304 n + 157400 \left(3 n - 2\right)^{2} - 1259200}{\left(3 n - 2\right)^{2} \left(486 n^{4} + 177075 n^{2} - 354294 n - 78700\right)}$$
(-1259200 - 4724304*n - 3179574*n^4 - 8748*n^6 - 5832*n^5 + 157400*(-2 + 3*n)^2 + 4252392*n^3 + 8501328*n^2 + 472200*n*(-2 + 3*n)^2 + 531225*n^3*(-2 + 3*n)^2 + 708300*n^2*(-2 + 3*n)^2)/((-2 + 3*n)^2*(-78700 - 354294*n + 486*n^4 + 177075*n^2))
Assemble expression [src]
  8 + 6*n                        2 + 3*n                     
- -------- + ------------------------------------------------
  -2 + 3*n              /     1        18*n        6*n      \
             (-2 + 3*n)*|- -------- + ----- + --------------|
                        |  -2 + 3*n   19675                2|
                        \                     4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
Combinatorics [src]
 /                               4           2         5\ 
-\-314800 - 2834352*n - 1589787*n  - 709164*n  + 2916*n / 
----------------------------------------------------------
              /                         4           2\    
   (-2 + 3*n)*\-78700 - 354294*n + 486*n  + 177075*n /    
$$- \frac{2916 n^{5} - 1589787 n^{4} - 709164 n^{2} - 2834352 n - 314800}{\left(3 n - 2\right) \left(486 n^{4} + 177075 n^{2} - 354294 n - 78700\right)}$$
-(-314800 - 2834352*n - 1589787*n^4 - 709164*n^2 + 2916*n^5)/((-2 + 3*n)*(-78700 - 354294*n + 486*n^4 + 177075*n^2))
Combining rational expressions [src]
-2*(4 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))) + 19675*(-2 + 3*n)*(2 + 3*n)*(4 + 3*n*(2 + 3*n))
-----------------------------------------------------------------------------------------------------------------------------------
                          (-2 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n)))                         
$$\frac{19675 \left(3 n - 2\right) \left(3 n + 2\right) \left(3 n \left(3 n + 2\right) + 4\right) - 2 \left(3 n + 4\right) \left(6 n \left(3 n - 2\right) \left(9 n \left(3 n + 2\right) + 19687\right) - 59025 n \left(3 n + 2\right) - 78700\right)}{\left(3 n - 2\right) \left(6 n \left(3 n - 2\right) \left(9 n \left(3 n + 2\right) + 19687\right) - 59025 n \left(3 n + 2\right) - 78700\right)}$$
(-2*(4 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))) + 19675*(-2 + 3*n)*(2 + 3*n)*(4 + 3*n*(2 + 3*n)))/((-2 + 3*n)*(-78700 - 59025*n*(2 + 3*n) + 6*n*(-2 + 3*n)*(19687 + 9*n*(2 + 3*n))))
Powers [src]
-8 - 6*n                       2 + 3*n                     
-------- + ------------------------------------------------
-2 + 3*n              /     1        18*n        6*n      \
           (-2 + 3*n)*|- -------- + ----- + --------------|
                      |  -2 + 3*n   19675                2|
                      \                     4 + 6*n + 9*n /
$$\frac{- 6 n - 8}{3 n - 2} + \frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)}$$
  8 + 6*n                        2 + 3*n                     
- -------- + ------------------------------------------------
  -2 + 3*n              /     1        18*n        6*n      \
             (-2 + 3*n)*|- -------- + ----- + --------------|
                        |  -2 + 3*n   19675                2|
                        \                     4 + 6*n + 9*n /
$$\frac{3 n + 2}{\left(3 n - 2\right) \left(\frac{18 n}{19675} + \frac{6 n}{9 n^{2} + 6 n + 4} - \frac{1}{3 n - 2}\right)} - \frac{6 n + 8}{3 n - 2}$$
-(8 + 6*n)/(-2 + 3*n) + (2 + 3*n)/((-2 + 3*n)*(-1/(-2 + 3*n) + 18*n/19675 + 6*n/(4 + 6*n + 9*n^2)))
Common denominator [src]
                         2            3            4              
       629600 - 2124900*n  + 1062450*n  + 1587843*n  + 3779328*n  
-2 + -------------------------------------------------------------
                       2        4         5                      3
     157400 - 1417032*n  - 972*n  + 1458*n  + 472488*n + 531225*n 
$$\frac{1587843 n^{4} + 1062450 n^{3} - 2124900 n^{2} + 3779328 n + 629600}{1458 n^{5} - 972 n^{4} + 531225 n^{3} - 1417032 n^{2} + 472488 n + 157400} - 2$$
-2 + (629600 - 2124900*n^2 + 1062450*n^3 + 1587843*n^4 + 3779328*n)/(157400 - 1417032*n^2 - 972*n^4 + 1458*n^5 + 472488*n + 531225*n^3)