General simplification
[src]
$$- x^{2} + 12 x y - 2 y^{2}$$
/ / ____\\ / / ____\\
\x - y*\6 - \/ 34 //*\x - y*\6 + \/ 34 //
$$\left(x - y \left(6 - \sqrt{34}\right)\right) \left(x - y \left(\sqrt{34} + 6\right)\right)$$
(x - y*(6 - sqrt(34)))*(x - y*(6 + sqrt(34)))
The perfect square
Let's highlight the perfect square of the square three-member
$$- 2 y^{2} + \left(- x^{2} + 12 x y\right)$$
Let us write down the identical expression
$$- 2 y^{2} + \left(- x^{2} + 12 x y\right) = 34 y^{2} + \left(- x^{2} + 12 x y - 36 y^{2}\right)$$
or
$$- 2 y^{2} + \left(- x^{2} + 12 x y\right) = 34 y^{2} - \left(x - 6 y\right)^{2}$$
$$- x^{2} + 12 x y - 2 y^{2}$$
$$- x^{2} + 12 x y - 2 y^{2}$$
Assemble expression
[src]
$$- x^{2} + 12 x y - 2 y^{2}$$
Rational denominator
[src]
$$- x^{2} + 12 x y - 2 y^{2}$$
Combining rational expressions
[src]
$$x \left(- x + 12 y\right) - 2 y^{2}$$
$$- x^{2} + 12 x y - 2 y^{2}$$
$$- x^{2} + 12 x y - 2 y^{2}$$
-x^2 - 2.0*y^2 + 12.0*x*y
-x^2 - 2.0*y^2 + 12.0*x*y