Mister Exam

Factor -x^2-x+6 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- x  - x + 6
$$\left(- x^{2} - x\right) + 6$$
-x^2 - x + 6
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- x^{2} - x\right) + 6$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = 6$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{25}{4}$$
So,
$$\frac{25}{4} - \left(x + \frac{1}{2}\right)^{2}$$
General simplification [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2
Factorization [src]
(x + 3)*(x - 2)
$$\left(x - 2\right) \left(x + 3\right)$$
(x + 3)*(x - 2)
Assemble expression [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2
Rational denominator [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2
Combining rational expressions [src]
6 + x*(-1 - x)
$$x \left(- x - 1\right) + 6$$
6 + x*(-1 - x)
Trigonometric part [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2
Powers [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2
Combinatorics [src]
-(-2 + x)*(3 + x)
$$- \left(x - 2\right) \left(x + 3\right)$$
-(-2 + x)*(3 + x)
Numerical answer [src]
6.0 - x - x^2
6.0 - x - x^2
Common denominator [src]
         2
6 - x - x 
$$- x^{2} - x + 6$$
6 - x - x^2