Mister Exam

How do you x/(2x^2-x+1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
     x      
------------
   2        
2*x  - x + 1
$$\frac{x}{\left(2 x^{2} - x\right) + 1}$$
x/(2*x^2 - x + 1)
General simplification [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Fraction decomposition [src]
x/(1 - x + 2*x^2)
$$\frac{x}{2 x^{2} - x + 1}$$
     x      
------------
           2
1 - x + 2*x 
Numerical answer [src]
x/(1.0 - x + 2.0*x^2)
x/(1.0 - x + 2.0*x^2)
Rational denominator [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Combining rational expressions [src]
       x        
----------------
1 + x*(-1 + 2*x)
$$\frac{x}{x \left(2 x - 1\right) + 1}$$
x/(1 + x*(-1 + 2*x))
Powers [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Combinatorics [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Assemble expression [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Trigonometric part [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)
Common denominator [src]
     x      
------------
           2
1 - x + 2*x 
$$\frac{x}{2 x^{2} - x + 1}$$
x/(1 - x + 2*x^2)