Fraction decomposition
[src]
$$\frac{1}{d}$$
General simplification
[src]
$$\frac{1}{d}$$
Rational denominator
[src]
/ 2 \
(p - d)*\- 2*d + (d + p)*(d - p)/
----------------------------------
/ 2 2\
d*(d - p)*\d + p /
$$\frac{\left(- d + p\right) \left(- 2 d^{2} + \left(d - p\right) \left(d + p\right)\right)}{d \left(d - p\right) \left(d^{2} + p^{2}\right)}$$
(p - d)*(-2*d^2 + (d + p)*(d - p))/(d*(d - p)*(d^2 + p^2))
Assemble expression
[src]
/d + p 2*d \
(p - d)*|----- - -----|
\ d d - p/
-----------------------
2 2
d + p
$$\frac{\left(- d + p\right) \left(- \frac{2 d}{d - p} + \frac{d + p}{d}\right)}{d^{2} + p^{2}}$$
(p - d)*((d + p)/d - 2*d/(d - p))/(d^2 + p^2)
/d + p 2*d \
(p - d)*|----- - -----|
\ d d - p/
-----------------------
2 2
d + p
$$\frac{\left(- d + p\right) \left(- \frac{2 d}{d - p} + \frac{d + p}{d}\right)}{d^{2} + p^{2}}$$
(p - d)*((d + p)/d - 2*d/(d - p))/(d^2 + p^2)
(p - d)*((d + p)/d - 2.0*d/(d - p))/(d^2 + p^2)
(p - d)*((d + p)/d - 2.0*d/(d - p))/(d^2 + p^2)
/d + p 2*d \
(p - d)*|----- - -----|
\ d d - p/
-----------------------
2 2
d + p
$$\frac{\left(- d + p\right) \left(- \frac{2 d}{d - p} + \frac{d + p}{d}\right)}{d^{2} + p^{2}}$$
(p - d)*((d + p)/d - 2*d/(d - p))/(d^2 + p^2)
Combining rational expressions
[src]
/ 2 \
(p - d)*\- 2*d + (d + p)*(d - p)/
----------------------------------
/ 2 2\
d*(d - p)*\d + p /
$$\frac{\left(- d + p\right) \left(- 2 d^{2} + \left(d - p\right) \left(d + p\right)\right)}{d \left(d - p\right) \left(d^{2} + p^{2}\right)}$$
(p - d)*(-2*d^2 + (d + p)*(d - p))/(d*(d - p)*(d^2 + p^2))