Mister Exam

Other calculators

How do you 1/(x-x^2) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
     2
x - x 
1x2+x\frac{1}{- x^{2} + x}
1/(x - x^2)
General simplification [src]
   -1     
----------
x*(-1 + x)
1x(x1)- \frac{1}{x \left(x - 1\right)}
-1/(x*(-1 + x))
Fraction decomposition [src]
1/x - 1/(-1 + x)
1x1+1x- \frac{1}{x - 1} + \frac{1}{x}
1     1   
- - ------
x   -1 + x
Numerical answer [src]
1/(x - x^2)
1/(x - x^2)
Common denominator [src]
 -1   
------
 2    
x  - x
1x2x- \frac{1}{x^{2} - x}
-1/(x^2 - x)
Combining rational expressions [src]
    1    
---------
x*(1 - x)
1x(1x)\frac{1}{x \left(1 - x\right)}
1/(x*(1 - x))
Combinatorics [src]
   -1     
----------
x*(-1 + x)
1x(x1)- \frac{1}{x \left(x - 1\right)}
-1/(x*(-1 + x))