Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(1+x)/3
Limit of (-16+2^x)/(-1+5*sqrt(x)*(5-x))
Limit of (-14+x^2-5*x)/(-6+x+2*x^2)
Limit of (3+x^2+4*x)/(1+x^3)
How do you in partial fractions?
:
1/(x-x^2)
Integral of d{x}
:
1/(x-x^2)
Graphing y =
:
1/(x-x^2)
Identical expressions
one /(x-x^ two)
1 divide by (x minus x squared )
one divide by (x minus x to the power of two)
1/(x-x2)
1/x-x2
1/(x-x²)
1/(x-x to the power of 2)
1/x-x^2
1 divide by (x-x^2)
Similar expressions
2+1/x-x^2+x^3/(x^2+4*x)
1/(x+x^2)
Limit of the function
/
1/(x-x^2)
Limit of the function 1/(x-x^2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------ x->oo 2 x - x
$$\lim_{x \to \infty} \frac{1}{- x^{2} + x}$$
Limit(1/(x - x^2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{- x^{2} + x}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{- x^{2} + x}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(-1 + \frac{1}{x}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{2} \left(-1 + \frac{1}{x}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{u - 1}\right)$$
=
$$\frac{0^{2}}{-1} = 0$$
The final answer:
$$\lim_{x \to \infty} \frac{1}{- x^{2} + x} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{- x^{2} + x} = 0$$
$$\lim_{x \to 0^-} \frac{1}{- x^{2} + x} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{- x^{2} + x} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{- x^{2} + x} = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{- x^{2} + x} = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{- x^{2} + x} = 0$$
More at x→-oo
The graph