Mister Exam

Other calculators

How do you 1/((1+x)*sqrt(x)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
      1      
-------------
          ___
(1 + x)*\/ x 
1x(x+1)\frac{1}{\sqrt{x} \left(x + 1\right)}
1/((1 + x)*sqrt(x))
Fraction decomposition [src]
1/sqrt(x) - sqrt(x)/(1 + x)
xx+1+1x- \frac{\sqrt{x}}{x + 1} + \frac{1}{\sqrt{x}}
          ___
  1     \/ x 
----- - -----
  ___   1 + x
\/ x         
Numerical answer [src]
x^(-0.5)/(1.0 + x)
x^(-0.5)/(1.0 + x)
Common denominator [src]
     1      
------------
  ___    3/2
\/ x  + x   
1x32+x\frac{1}{x^{\frac{3}{2}} + \sqrt{x}}
1/(sqrt(x) + x^(3/2))
Rational denominator [src]
    ___  
  \/ x   
---------
x*(1 + x)
xx(x+1)\frac{\sqrt{x}}{x \left(x + 1\right)}
sqrt(x)/(x*(1 + x))