Mister Exam

How do you 1/(x^3+1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
 3    
x  + 1
1x3+1\frac{1}{x^{3} + 1}
1/(x^3 + 1)
Fraction decomposition [src]
1/(3*(1 + x)) - (-2 + x)/(3*(1 + x^2 - x))
x23(x2x+1)+13(x+1)- \frac{x - 2}{3 \left(x^{2} - x + 1\right)} + \frac{1}{3 \left(x + 1\right)}
    1           -2 + x    
--------- - --------------
3*(1 + x)     /     2    \
            3*\1 + x  - x/
Numerical answer [src]
1/(1.0 + x^3)
1/(1.0 + x^3)
Combinatorics [src]
         1          
--------------------
        /     2    \
(1 + x)*\1 + x  - x/
1(x+1)(x2x+1)\frac{1}{\left(x + 1\right) \left(x^{2} - x + 1\right)}
1/((1 + x)*(1 + x^2 - x))