Fraction decomposition
[src]
-1 + a^(-2) - 1/(1 + a^2)
$$-1 - \frac{1}{a^{2} + 1} + \frac{1}{a^{2}}$$
1 1
-1 + -- - ------
2 2
a 1 + a
General simplification
[src]
2 4
1 - a - a
-----------
2 / 2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
Rational denominator
[src]
2 4
1 - a - a
-----------
2 / 2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
(-1.0 + a^(-2) - a^2)/(1.0 + a^2)
(-1.0 + a^(-2) - a^2)/(1.0 + a^2)
Combining rational expressions
[src]
2 4
1 - a - a
-----------
2 / 2\
a *\1 + a /
$$\frac{- a^{4} - a^{2} + 1}{a^{2} \left(a^{2} + 1\right)}$$
(1 - a^2 - a^4)/(a^2*(1 + a^2))
/ 2 4\
-\-1 + a + a /
----------------
2 / 2\
a *\1 + a /
$$- \frac{a^{4} + a^{2} - 1}{a^{2} \left(a^{2} + 1\right)}$$
-(-1 + a^2 + a^4)/(a^2*(1 + a^2))
1 2
-1 + -- - a
2
a
------------
2
1 + a
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)
$$-1 + \frac{1}{a^{4} + a^{2}}$$
1 2
-1 + -- - a
2
a
------------
2
1 + a
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)
Assemble expression
[src]
1 2
-1 + -- - a
2
a
------------
2
1 + a
$$\frac{- a^{2} - 1 + \frac{1}{a^{2}}}{a^{2} + 1}$$
(-1 + a^(-2) - a^2)/(1 + a^2)