Mister Exam

Other calculators

Factor polynomial x^2*x-9-18*x-81*x-9

An expression to simplify:

The solution

You have entered [src]
 2                        
x *x - 9 - 18*x - 81*x - 9
$$\left(- 81 x + \left(- 18 x + \left(x x^{2} - 9\right)\right)\right) - 9$$
x^2*x - 9 - 18*x - 81*x - 9
General simplification [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Factorization [src]
/         __________________ /          ___\                                        \ /         __________________ /          ___\                                        \ /         __________________                        \
|      3 /            _____  |  1   I*\/ 3 |                     33                 | |      3 /            _____  |  1   I*\/ 3 |                     33                 | |      3 /            _____              33         |
|x + - \/  9 + 12*I*\/ 249  *|- - - -------| - -------------------------------------|*|x + - \/  9 + 12*I*\/ 249  *|- - + -------| - -------------------------------------|*|x + - \/  9 + 12*I*\/ 249   - ---------------------|
|                            \  2      2   /      __________________ /          ___\| |                            \  2      2   /      __________________ /          ___\| |                                 __________________|
|                                              3 /            _____  |  1   I*\/ 3 || |                                              3 /            _____  |  1   I*\/ 3 || |                              3 /            _____ |
|                                              \/  9 + 12*I*\/ 249  *|- - - -------|| |                                              \/  9 + 12*I*\/ 249  *|- - + -------|| \                              \/  9 + 12*I*\/ 249  /
\                                                                    \  2      2   // \                                                                    \  2      2   //                                                      
$$\left(x + \left(- \frac{33}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{9 + 12 \sqrt{249} i}} - \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{9 + 12 \sqrt{249} i}\right)\right) \left(x + \left(- \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{9 + 12 \sqrt{249} i} - \frac{33}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{9 + 12 \sqrt{249} i}}\right)\right) \left(x + \left(- \sqrt[3]{9 + 12 \sqrt{249} i} - \frac{33}{\sqrt[3]{9 + 12 \sqrt{249} i}}\right)\right)$$
((x - (9 + 12*i*sqrt(249))^(1/3)*(-1/2 - i*sqrt(3)/2) - 33/((9 + 12*i*sqrt(249))^(1/3)*(-1/2 - i*sqrt(3)/2)))*(x - (9 + 12*i*sqrt(249))^(1/3)*(-1/2 + i*sqrt(3)/2) - 33/((9 + 12*i*sqrt(249))^(1/3)*(-1/2 + i*sqrt(3)/2))))*(x - (9 + 12*i*sqrt(249))^(1/3) - 33/(9 + 12*i*sqrt(249))^(1/3))
Numerical answer [src]
-18.0 + x^3 - 99.0*x
-18.0 + x^3 - 99.0*x
Powers [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Combinatorics [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Common denominator [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Rational denominator [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Assemble expression [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Trigonometric part [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x
Combining rational expressions [src]
       3       
-18 + x  - 99*x
$$x^{3} - 99 x - 18$$
-18 + x^3 - 99*x