Mister Exam

Factor polynomial x^3-1

An expression to simplify:

The solution

You have entered [src]
 3    
x  - 1
$$x^{3} - 1$$
x^3 - 1
Factorization [src]
        /            ___\ /            ___\
        |    1   I*\/ 3 | |    1   I*\/ 3 |
(x - 1)*|x + - + -------|*|x + - - -------|
        \    2      2   / \    2      2   /
$$\left(x - 1\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)\right) \left(x + \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right)$$
((x - 1)*(x + 1/2 + i*sqrt(3)/2))*(x + 1/2 - i*sqrt(3)/2)
Numerical answer [src]
-1.0 + x^3
-1.0 + x^3
Combinatorics [src]
         /         2\
(-1 + x)*\1 + x + x /
$$\left(x - 1\right) \left(x^{2} + x + 1\right)$$
(-1 + x)*(1 + x + x^2)