Mister Exam

Factor polynomial x^5+2*x

An expression to simplify:

The solution

You have entered [src]
 5      
x  + 2*x
$$x^{5} + 2 x$$
x^5 + 2*x
General simplification [src]
  /     4\
x*\2 + x /
$$x \left(x^{4} + 2\right)$$
x*(2 + x^4)
Factorization [src]
  /     3/4      3/4\ /     3/4      3/4\ /       3/4      3/4\ /       3/4      3/4\
  |    2      I*2   | |    2      I*2   | |      2      I*2   | |      2      I*2   |
x*|x + ---- + ------|*|x + ---- - ------|*|x + - ---- + ------|*|x + - ---- - ------|
  \     2       2   / \     2       2   / \       2       2   / \       2       2   /
$$x \left(x + \left(\frac{2^{\frac{3}{4}}}{2} + \frac{2^{\frac{3}{4}} i}{2}\right)\right) \left(x + \left(\frac{2^{\frac{3}{4}}}{2} - \frac{2^{\frac{3}{4}} i}{2}\right)\right) \left(x + \left(- \frac{2^{\frac{3}{4}}}{2} + \frac{2^{\frac{3}{4}} i}{2}\right)\right) \left(x + \left(- \frac{2^{\frac{3}{4}}}{2} - \frac{2^{\frac{3}{4}} i}{2}\right)\right)$$
(((x*(x + 2^(3/4)/2 + i*2^(3/4)/2))*(x + 2^(3/4)/2 - i*2^(3/4)/2))*(x - 2^(3/4)/2 + i*2^(3/4)/2))*(x - 2^(3/4)/2 - i*2^(3/4)/2)
Numerical answer [src]
x^5 + 2.0*x
x^5 + 2.0*x
Combinatorics [src]
  /     4\
x*\2 + x /
$$x \left(x^{4} + 2\right)$$
x*(2 + x^4)
Combining rational expressions [src]
  /     4\
x*\2 + x /
$$x \left(x^{4} + 2\right)$$
x*(2 + x^4)