Mister Exam

How do you xy/(xy^2+xy) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
   x*y    
----------
   2      
x*y  + x*y
$$\frac{x y}{x y^{2} + x y}$$
(x*y)/(x*y^2 + x*y)
General simplification [src]
  1  
-----
1 + y
$$\frac{1}{y + 1}$$
1/(1 + y)
Fraction decomposition [src]
1/(1 + y)
$$\frac{1}{y + 1}$$
  1  
-----
1 + y
Combinatorics [src]
  1  
-----
1 + y
$$\frac{1}{y + 1}$$
1/(1 + y)
Combining rational expressions [src]
  1  
-----
1 + y
$$\frac{1}{y + 1}$$
1/(1 + y)
Numerical answer [src]
x*y/(x*y + x*y^2)
x*y/(x*y + x*y^2)
Common denominator [src]
  1  
-----
1 + y
$$\frac{1}{y + 1}$$
1/(1 + y)
Assemble expression [src]
  y   
------
     2
y + y 
$$\frac{y}{y^{2} + y}$$
y/(y + y^2)