Mister Exam

Factor y^2-y+11 squared

An expression to simplify:

The solution

You have entered [src]
 2         
y  - y + 11
(y2y)+11\left(y^{2} - y\right) + 11
y^2 - y + 11
Factorization [src]
/              ____\ /              ____\
|      1   I*\/ 43 | |      1   I*\/ 43 |
|x + - - + --------|*|x + - - - --------|
\      2      2    / \      2      2    /
(x+(1243i2))(x+(12+43i2))\left(x + \left(- \frac{1}{2} - \frac{\sqrt{43} i}{2}\right)\right) \left(x + \left(- \frac{1}{2} + \frac{\sqrt{43} i}{2}\right)\right)
(x - 1/2 + i*sqrt(43)/2)*(x - 1/2 - i*sqrt(43)/2)
The perfect square
Let's highlight the perfect square of the square three-member
(y2y)+11\left(y^{2} - y\right) + 11
To do this, let's use the formula
ay2+by+c=a(m+y)2+na y^{2} + b y + c = a \left(m + y\right)^{2} + n
where
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
In this case
a=1a = 1
b=1b = -1
c=11c = 11
Then
m=12m = - \frac{1}{2}
n=434n = \frac{43}{4}
So,
(y12)2+434\left(y - \frac{1}{2}\right)^{2} + \frac{43}{4}
General simplification [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Assemble expression [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Common denominator [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Rational denominator [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Trigonometric part [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Numerical answer [src]
11.0 + y^2 - y
11.0 + y^2 - y
Powers [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Combinatorics [src]
      2    
11 + y  - y
y2y+11y^{2} - y + 11
11 + y^2 - y
Combining rational expressions [src]
11 + y*(-1 + y)
y(y1)+11y \left(y - 1\right) + 11
11 + y*(-1 + y)