Mister Exam

Other calculators:

Limit of the function y/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /y\
 lim |-|
x->0+\x/
$$\lim_{x \to 0^+}\left(\frac{y}{x}\right)$$
Limit(y/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$
$$\lim_{x \to \infty}\left(\frac{y}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{y}{x}\right) = y$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{y}{x}\right) = y$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{y}{x}\right) = 0$$
More at x→-oo
Rapid solution [src]
oo*sign(y)
$$\infty \operatorname{sign}{\left(y \right)}$$
One‐sided limits [src]
     /y\
 lim |-|
x->0+\x/
$$\lim_{x \to 0^+}\left(\frac{y}{x}\right)$$
oo*sign(y)
$$\infty \operatorname{sign}{\left(y \right)}$$
     /y\
 lim |-|
x->0-\x/
$$\lim_{x \to 0^-}\left(\frac{y}{x}\right)$$
-oo*sign(y)
$$- \infty \operatorname{sign}{\left(y \right)}$$
-oo*sign(y)