There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{y}{x}\right) = \infty \operatorname{sign}{\left(y \right)}$$ $$\lim_{x \to \infty}\left(\frac{y}{x}\right) = 0$$ More at x→oo $$\lim_{x \to 1^-}\left(\frac{y}{x}\right) = y$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{y}{x}\right) = y$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{y}{x}\right) = 0$$ More at x→-oo