$$\lim_{x \to 0^-} \log{\left(\frac{\sin{\left(x \right)}}{x} \right)} = 0$$ More at x→0 from the left $$\lim_{x \to 0^+} \log{\left(\frac{\sin{\left(x \right)}}{x} \right)} = 0$$
False
More at x→oo $$\lim_{x \to 1^-} \log{\left(\frac{\sin{\left(x \right)}}{x} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$ More at x→1 from the left $$\lim_{x \to 1^+} \log{\left(\frac{\sin{\left(x \right)}}{x} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$ More at x→1 from the right