Mister Exam

Other calculators:


log(log(x))/x

Limit of the function log(log(x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /log(log(x))\
 lim |-----------|
x->oo\     x     /
$$\lim_{x \to \infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right)$$
Limit(log(log(x))/x, x, oo, dir='-')
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(\log{\left(x \right)} \right)}}{x}\right) = 0$$
More at x→-oo
The graph
Limit of the function log(log(x))/x