Mister Exam

Other calculators:


x^2*exp(-x)

Limit of the function x^2*exp(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2  -x\
 lim \x *e  /
x->oo        
limx(x2ex)\lim_{x \to \infty}\left(x^{2} e^{- x}\right)
Limit(x^2*exp(-x), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
and limit for the denominator is
limxex=\lim_{x \to \infty} e^{x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(x2ex)\lim_{x \to \infty}\left(x^{2} e^{- x}\right)
=
limx(ddxx2ddxex)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} e^{x}}\right)
=
limx(2xex)\lim_{x \to \infty}\left(2 x e^{- x}\right)
=
limx(ddx2xddxex)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 2 x}{\frac{d}{d x} e^{x}}\right)
=
limx(2ex)\lim_{x \to \infty}\left(2 e^{- x}\right)
=
limx(2ex)\lim_{x \to \infty}\left(2 e^{- x}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
02468-8-6-4-2-101002000000
Other limits x→0, -oo, +oo, 1
limx(x2ex)=0\lim_{x \to \infty}\left(x^{2} e^{- x}\right) = 0
limx0(x2ex)=0\lim_{x \to 0^-}\left(x^{2} e^{- x}\right) = 0
More at x→0 from the left
limx0+(x2ex)=0\lim_{x \to 0^+}\left(x^{2} e^{- x}\right) = 0
More at x→0 from the right
limx1(x2ex)=e1\lim_{x \to 1^-}\left(x^{2} e^{- x}\right) = e^{-1}
More at x→1 from the left
limx1+(x2ex)=e1\lim_{x \to 1^+}\left(x^{2} e^{- x}\right) = e^{-1}
More at x→1 from the right
limx(x2ex)=\lim_{x \to -\infty}\left(x^{2} e^{- x}\right) = \infty
More at x→-oo
Rapid solution [src]
0
00
The graph
Limit of the function x^2*exp(-x)