Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Derivative of
:
x^3*cos(x)
Graphing y =
:
x^3*cos(x)
Integral of d{x}
:
x^3*cos(x)
Identical expressions
x^ three *cos(x)
x cubed multiply by co sinus of e of (x)
x to the power of three multiply by co sinus of e of (x)
x3*cos(x)
x3*cosx
x³*cos(x)
x to the power of 3*cos(x)
x^3cos(x)
x3cos(x)
x3cosx
x^3cosx
Similar expressions
x^3*cosx
Limit of the function
/
x^3*cos(x)
Limit of the function x^3*cos(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3 \ lim \x *cos(x)/ x->oo
lim
x
→
∞
(
x
3
cos
(
x
)
)
\lim_{x \to \infty}\left(x^{3} \cos{\left(x \right)}\right)
x
→
∞
lim
(
x
3
cos
(
x
)
)
Limit(x^3*cos(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-2000
2000
Plot the graph
Rapid solution
[src]
oo*sign(<-1, 1>)
∞
sign
(
⟨
−
1
,
1
⟩
)
\infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}
∞
sign
(
⟨
−
1
,
1
⟩
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
3
cos
(
x
)
)
=
∞
sign
(
⟨
−
1
,
1
⟩
)
\lim_{x \to \infty}\left(x^{3} \cos{\left(x \right)}\right) = \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}
x
→
∞
lim
(
x
3
cos
(
x
)
)
=
∞
sign
(
⟨
−
1
,
1
⟩
)
lim
x
→
0
−
(
x
3
cos
(
x
)
)
=
0
\lim_{x \to 0^-}\left(x^{3} \cos{\left(x \right)}\right) = 0
x
→
0
−
lim
(
x
3
cos
(
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
3
cos
(
x
)
)
=
0
\lim_{x \to 0^+}\left(x^{3} \cos{\left(x \right)}\right) = 0
x
→
0
+
lim
(
x
3
cos
(
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
3
cos
(
x
)
)
=
cos
(
1
)
\lim_{x \to 1^-}\left(x^{3} \cos{\left(x \right)}\right) = \cos{\left(1 \right)}
x
→
1
−
lim
(
x
3
cos
(
x
)
)
=
cos
(
1
)
More at x→1 from the left
lim
x
→
1
+
(
x
3
cos
(
x
)
)
=
cos
(
1
)
\lim_{x \to 1^+}\left(x^{3} \cos{\left(x \right)}\right) = \cos{\left(1 \right)}
x
→
1
+
lim
(
x
3
cos
(
x
)
)
=
cos
(
1
)
More at x→1 from the right
lim
x
→
−
∞
(
x
3
cos
(
x
)
)
=
−
∞
sign
(
⟨
−
1
,
1
⟩
)
\lim_{x \to -\infty}\left(x^{3} \cos{\left(x \right)}\right) = - \infty \operatorname{sign}{\left(\left\langle -1, 1\right\rangle \right)}
x
→
−
∞
lim
(
x
3
cos
(
x
)
)
=
−
∞
sign
(
⟨
−
1
,
1
⟩
)
More at x→-oo
The graph