3 x *cos(x)
x^3*cos(x)
Apply the product rule:
f(x)=x3f{\left(x \right)} = x^{3}f(x)=x3; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: x3x^{3}x3 goes to 3x23 x^{2}3x2
g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}g(x)=cos(x); to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The derivative of cosine is negative sine:
The result is: −x3sin(x)+3x2cos(x)- x^{3} \sin{\left(x \right)} + 3 x^{2} \cos{\left(x \right)}−x3sin(x)+3x2cos(x)
Now simplify:
The answer is:
3 2 - x *sin(x) + 3*x *cos(x)
/ 2 \ x*\6*cos(x) - x *cos(x) - 6*x*sin(x)/
3 2 6*cos(x) + x *sin(x) - 18*x*sin(x) - 9*x *cos(x)