Mister Exam

Other calculators:


x^3-x

Limit of the function x^3-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3    \
 lim \x  - x/
x->1+        
$$\lim_{x \to 1^+}\left(x^{3} - x\right)$$
Limit(x^3 - x, x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(x^{3} - x\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} - x\right) = 0$$
$$\lim_{x \to \infty}\left(x^{3} - x\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x^{3} - x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} - x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(x^{3} - x\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     / 3    \
 lim \x  - x/
x->1+        
$$\lim_{x \to 1^+}\left(x^{3} - x\right)$$
0
$$0$$
= 2.48938774912321e-31
     / 3    \
 lim \x  - x/
x->1-        
$$\lim_{x \to 1^-}\left(x^{3} - x\right)$$
0
$$0$$
= -8.29922254882846e-31
= -8.29922254882846e-31
Rapid solution [src]
0
$$0$$
Numerical answer [src]
2.48938774912321e-31
2.48938774912321e-31
The graph
Limit of the function x^3-x