Mister Exam

Other calculators:

Limit of the function n2*(5/2+n/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   /5   n\\
 lim  |n2*|- + -||
n2->0+\   \2   2//
$$\lim_{n_{2} \to 0^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right)$$
Limit(n2*(5/2 + n/2), n2, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
0
$$0$$
Other limits n2→0, -oo, +oo, 1
$$\lim_{n_{2} \to 0^-}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = 0$$
More at n2→0 from the left
$$\lim_{n_{2} \to 0^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = 0$$
$$\lim_{n_{2} \to \infty}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \infty \operatorname{sign}{\left(n + 5 \right)}$$
More at n2→oo
$$\lim_{n_{2} \to 1^-}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \frac{n}{2} + \frac{5}{2}$$
More at n2→1 from the left
$$\lim_{n_{2} \to 1^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \frac{n}{2} + \frac{5}{2}$$
More at n2→1 from the right
$$\lim_{n_{2} \to -\infty}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = - \infty \operatorname{sign}{\left(n + 5 \right)}$$
More at n2→-oo
One‐sided limits [src]
      /   /5   n\\
 lim  |n2*|- + -||
n2->0+\   \2   2//
$$\lim_{n_{2} \to 0^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right)$$
0
$$0$$
      /   /5   n\\
 lim  |n2*|- + -||
n2->0-\   \2   2//
$$\lim_{n_{2} \to 0^-}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right)$$
0
$$0$$
0