$$\lim_{n_{2} \to 0^-}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = 0$$
More at n2→0 from the left$$\lim_{n_{2} \to 0^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = 0$$
$$\lim_{n_{2} \to \infty}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \infty \operatorname{sign}{\left(n + 5 \right)}$$
More at n2→oo$$\lim_{n_{2} \to 1^-}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \frac{n}{2} + \frac{5}{2}$$
More at n2→1 from the left$$\lim_{n_{2} \to 1^+}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = \frac{n}{2} + \frac{5}{2}$$
More at n2→1 from the right$$\lim_{n_{2} \to -\infty}\left(n_{2} \left(\frac{n}{2} + \frac{5}{2}\right)\right) = - \infty \operatorname{sign}{\left(n + 5 \right)}$$
More at n2→-oo