Mister Exam

Other calculators:


x^3-4*x

Limit of the function x^3-4*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3      \
 lim \x  - 4*x/
x->0+          
$$\lim_{x \to 0^+}\left(x^{3} - 4 x\right)$$
Limit(x^3 - 4*x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     / 3      \
 lim \x  - 4*x/
x->0+          
$$\lim_{x \to 0^+}\left(x^{3} - 4 x\right)$$
0
$$0$$
= 4.88092159433412e-31
     / 3      \
 lim \x  - 4*x/
x->0-          
$$\lim_{x \to 0^-}\left(x^{3} - 4 x\right)$$
0
$$0$$
= -4.88092159433412e-31
= -4.88092159433412e-31
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{3} - 4 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} - 4 x\right) = 0$$
$$\lim_{x \to \infty}\left(x^{3} - 4 x\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{3} - 4 x\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} - 4 x\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} - 4 x\right) = -\infty$$
More at x→-oo
Numerical answer [src]
4.88092159433412e-31
4.88092159433412e-31
The graph
Limit of the function x^3-4*x