Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((3+x)^2+(3-x)^2)/((3-x)^2-(3+x)^2)
Limit of (-1+x)/(-2+sqrt(3+x))
Limit of (-x+tan(x))/x^3
Limit of (-1+sqrt(x))/(-3+x)
Graphing y =
:
x^7
Derivative of
:
x^7
Integral of d{x}
:
x^7
Identical expressions
x^ seven
x to the power of 7
x to the power of seven
x7
x⁷
Similar expressions
x^7+4/x^2
log(x)/x^(7/3)
(x^8-x^7)/(x^5-x^4)
(1+2/x)^(7*x)
Limit of the function
/
x^7
Limit of the function x^7
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
7 lim x x->oo
$$\lim_{x \to \infty} x^{7}$$
Limit(x^7, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} x^{7}$$
Let's divide numerator and denominator by x^7:
$$\lim_{x \to \infty} x^{7}$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{7}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{7}}} = \lim_{u \to 0^+} \frac{1}{u^{7}}$$
=
$$\frac{1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty} x^{7} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} x^{7} = \infty$$
$$\lim_{x \to 0^-} x^{7} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{7} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} x^{7} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{7} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{7} = -\infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph