Mister Exam

Other calculators:


x^7

Limit of the function x^7

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      7
 lim x 
x->oo  
$$\lim_{x \to \infty} x^{7}$$
Limit(x^7, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} x^{7}$$
Let's divide numerator and denominator by x^7:
$$\lim_{x \to \infty} x^{7}$$ =
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{7}}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x^{7}}} = \lim_{u \to 0^+} \frac{1}{u^{7}}$$
=
$$\frac{1}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty} x^{7} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} x^{7} = \infty$$
$$\lim_{x \to 0^-} x^{7} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} x^{7} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} x^{7} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} x^{7} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} x^{7} = -\infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function x^7