Mister Exam

Other calculators:


(1+4*x)^(1/x)

Limit of the function (1+4*x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _________
 lim \/ 1 + 4*x 
x->0+           
limx0+(4x+1)1x\lim_{x \to 0^+} \left(4 x + 1\right)^{\frac{1}{x}}
Limit((1 + 4*x)^(1/x), x, 0)
Detail solution
Let's take the limit
limx0+(4x+1)1x\lim_{x \to 0^+} \left(4 x + 1\right)^{\frac{1}{x}}
transform
do replacement
u=14xu = \frac{1}{4 x}
then
limx0+(1+41x)1x\lim_{x \to 0^+} \left(1 + \frac{4}{\frac{1}{x}}\right)^{\frac{1}{x}} =
=
limu0+(1+1u)4u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{4 u}
=
limu0+(1+1u)4u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{4 u}
=
((limu0+(1+1u)u))4\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{4}
The limit
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu0+(1+1u)u))4=e4\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{4} = e^{4}

The final answer:
limx0+(4x+1)1x=e4\lim_{x \to 0^+} \left(4 x + 1\right)^{\frac{1}{x}} = e^{4}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100200
One‐sided limits [src]
     x _________
 lim \/ 1 + 4*x 
x->0+           
limx0+(4x+1)1x\lim_{x \to 0^+} \left(4 x + 1\right)^{\frac{1}{x}}
 4
e 
e4e^{4}
= 54.5981500331442
     x _________
 lim \/ 1 + 4*x 
x->0-           
limx0(4x+1)1x\lim_{x \to 0^-} \left(4 x + 1\right)^{\frac{1}{x}}
 4
e 
e4e^{4}
exp(4)
Rapid solution [src]
 4
e 
e4e^{4}
Other limits x→0, -oo, +oo, 1
limx0(4x+1)1x=e4\lim_{x \to 0^-} \left(4 x + 1\right)^{\frac{1}{x}} = e^{4}
More at x→0 from the left
limx0+(4x+1)1x=e4\lim_{x \to 0^+} \left(4 x + 1\right)^{\frac{1}{x}} = e^{4}
limx(4x+1)1x=1\lim_{x \to \infty} \left(4 x + 1\right)^{\frac{1}{x}} = 1
More at x→oo
limx1(4x+1)1x=5\lim_{x \to 1^-} \left(4 x + 1\right)^{\frac{1}{x}} = 5
More at x→1 from the left
limx1+(4x+1)1x=5\lim_{x \to 1^+} \left(4 x + 1\right)^{\frac{1}{x}} = 5
More at x→1 from the right
limx(4x+1)1x=1\lim_{x \to -\infty} \left(4 x + 1\right)^{\frac{1}{x}} = 1
More at x→-oo
Numerical answer [src]
54.5981500331442
54.5981500331442
The graph
Limit of the function (1+4*x)^(1/x)