Mister Exam

Other calculators:


tan(6*x)/(2*x)

Limit of the function tan(6*x)/(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(6*x)\
 lim |--------|
x->0+\  2*x   /
limx0+(tan(6x)2x)\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
Limit(tan(6*x)/((2*x)), x, 0)
Detail solution
Let's take the limit
limx0+(tan(6x)2x)\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
transform
limx0+(tan(6x)2x)=limx0+(12xsin(6x)cos(6x))\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = \lim_{x \to 0^+}\left(\frac{\frac{1}{2 x} \sin{\left(6 x \right)}}{\cos{\left(6 x \right)}}\right)
=
limx0+(12xsin(6x))limx0+1cos(6x)=limx0+(12xsin(6x))\lim_{x \to 0^+}\left(\frac{1}{2 x} \sin{\left(6 x \right)}\right) \lim_{x \to 0^+} \frac{1}{\cos{\left(6 x \right)}} = \lim_{x \to 0^+}\left(\frac{1}{2 x} \sin{\left(6 x \right)}\right)
Do replacement
u=6xu = 6 x
then
limx0+(sin(6x)2x)=limu0+(3sin(u)u)\lim_{x \to 0^+}\left(\frac{\sin{\left(6 x \right)}}{2 x}\right) = \lim_{u \to 0^+}\left(\frac{3 \sin{\left(u \right)}}{u}\right)
=
3limu0+(sin(u)u)3 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
The limit
limu0+(sin(u)u)\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)
is first remarkable limit, is equal to 1.

The final answer:
limx0+(tan(6x)2x)=3\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = 3
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+tan(6x)=0\lim_{x \to 0^+} \tan{\left(6 x \right)} = 0
and limit for the denominator is
limx0+(2x)=0\lim_{x \to 0^+}\left(2 x\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(tan(6x)2x)\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
=
Let's transform the function under the limit a few
limx0+(tan(6x)2x)\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
=
limx0+(ddxtan(6x)ddx2x)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan{\left(6 x \right)}}{\frac{d}{d x} 2 x}\right)
=
limx0+(3tan2(6x)+3)\lim_{x \to 0^+}\left(3 \tan^{2}{\left(6 x \right)} + 3\right)
=
limx0+(3tan2(6x)+3)\lim_{x \to 0^+}\left(3 \tan^{2}{\left(6 x \right)} + 3\right)
=
33
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-2020
One‐sided limits [src]
     /tan(6*x)\
 lim |--------|
x->0+\  2*x   /
limx0+(tan(6x)2x)\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
3
33
= 3.0
     /tan(6*x)\
 lim |--------|
x->0-\  2*x   /
limx0(tan(6x)2x)\lim_{x \to 0^-}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
3
33
= 3.0
= 3.0
Other limits x→0, -oo, +oo, 1
limx0(tan(6x)2x)=3\lim_{x \to 0^-}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = 3
More at x→0 from the left
limx0+(tan(6x)2x)=3\lim_{x \to 0^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = 3
limx(tan(6x)2x)\lim_{x \to \infty}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
More at x→oo
limx1(tan(6x)2x)=tan(6)2\lim_{x \to 1^-}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = \frac{\tan{\left(6 \right)}}{2}
More at x→1 from the left
limx1+(tan(6x)2x)=tan(6)2\lim_{x \to 1^+}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right) = \frac{\tan{\left(6 \right)}}{2}
More at x→1 from the right
limx(tan(6x)2x)\lim_{x \to -\infty}\left(\frac{\tan{\left(6 x \right)}}{2 x}\right)
More at x→-oo
Rapid solution [src]
3
33
Numerical answer [src]
3.0
3.0
The graph
Limit of the function tan(6*x)/(2*x)