Mister Exam

Other calculators:


x^(-2)

Limit of the function x^(-2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1 
 lim --
x->oo 2
     x 
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$
Limit(x^(-2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}}\right) = \lim_{u \to 0^+} u^{2}$$
=
$$0^{2} = 0$$

The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{2}} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{2}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{2}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{2}} = 0$$
More at x→-oo
The graph
Limit of the function x^(-2)