Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -sin(x)+tan(x)
Limit of cos(x)*tan(5*x)
Limit of -1+sqrt(5)-sqrt(2)-2*x
Limit of ((-1+4*x)/(3+4*x))^(2+3*x)
Derivative of
:
x^(-2)
Integral of d{x}
:
x^(-2)
Graphing y =
:
x^(-2)
Identical expressions
x^(- two)
x to the power of ( minus 2)
x to the power of ( minus two)
x(-2)
x-2
x^-2
Similar expressions
x^(2)
x*log(1+x^(-2))
x^(-2)+3/x^3
Limit of the function
/
x^(-2)
Limit of the function x^(-2)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim -- x->oo 2 x
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$
Limit(x^(-2), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty} \frac{1}{x^{2}}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x^{2}}\right) = \lim_{u \to 0^+} u^{2}$$
=
$$0^{2} = 0$$
The final answer:
$$\lim_{x \to \infty} \frac{1}{x^{2}} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{x^{2}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{x^{2}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{x^{2}} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{x^{2}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{x^{2}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{x^{2}} = 0$$
More at x→-oo
The graph