Mister Exam

Other calculators:


x^4*log(x)

Limit of the function x^4*log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 4       \
 lim \x *log(x)/
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} \log{\left(x \right)}\right)$$
Limit(x^4*log(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} x^{4} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\log{\left(x \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(x^{4} \log{\left(x \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x^{4}}{\frac{d}{d x} \frac{1}{\log{\left(x \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(- 4 x^{4} \log{\left(x \right)}^{2}\right)$$
=
$$\lim_{x \to 0^+}\left(- 4 x^{4} \log{\left(x \right)}^{2}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     / 4       \
 lim \x *log(x)/
x->0+           
$$\lim_{x \to 0^+}\left(x^{4} \log{\left(x \right)}\right)$$
0
$$0$$
= -4.17440384416252e-13
     / 4       \
 lim \x *log(x)/
x->0-           
$$\lim_{x \to 0^-}\left(x^{4} \log{\left(x \right)}\right)$$
0
$$0$$
= (-3.92017193388019e-13 + 2.09170932732045e-13j)
= (-3.92017193388019e-13 + 2.09170932732045e-13j)
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x^{4} \log{\left(x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{4} \log{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(x^{4} \log{\left(x \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(x^{4} \log{\left(x \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{4} \log{\left(x \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{4} \log{\left(x \right)}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-4.17440384416252e-13
-4.17440384416252e-13
The graph
Limit of the function x^4*log(x)