Mister Exam

Other calculators:


(x+x^2)^x

Limit of the function (x+x^2)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             x
     /     2\ 
 lim \x + x / 
x->0+         
$$\lim_{x \to 0^+} \left(x^{2} + x\right)^{x}$$
Limit((x + x^2)^x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
             x
     /     2\ 
 lim \x + x / 
x->0+         
$$\lim_{x \to 0^+} \left(x^{2} + x\right)^{x}$$
1
$$1$$
= 0.998265282442304
             x
     /     2\ 
 lim \x + x / 
x->0-         
$$\lim_{x \to 0^-} \left(x^{2} + x\right)^{x}$$
1
$$1$$
= (1.00192789717472 - 0.000830511182344165j)
= (1.00192789717472 - 0.000830511182344165j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(x^{2} + x\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(x^{2} + x\right)^{x} = 1$$
$$\lim_{x \to \infty} \left(x^{2} + x\right)^{x} = \infty$$
More at x→oo
$$\lim_{x \to 1^-} \left(x^{2} + x\right)^{x} = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(x^{2} + x\right)^{x} = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(x^{2} + x\right)^{x} = 0$$
More at x→-oo
Numerical answer [src]
0.998265282442304
0.998265282442304
The graph
Limit of the function (x+x^2)^x