Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-sin(x)+tan(x))/(-sin(x)+4*x)
Limit of (3+n)/(1+n)
Limit of (1+3*x)^(5/x)
Limit of x^2/(-2+sqrt(4+x^2))
Derivative of
:
x+sqrt(x)
Graphing y =
:
x+sqrt(x)
Integral of d{x}
:
x+sqrt(x)
Identical expressions
x+sqrt(x)
x plus square root of (x)
x+√(x)
x+sqrtx
Similar expressions
x-sqrt(x)
Limit of the function
/
x+sqrt(x)
Limit of the function x+sqrt(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ ___\ lim \x + \/ x / x->oo
lim
x
→
∞
(
x
+
x
)
\lim_{x \to \infty}\left(\sqrt{x} + x\right)
x
→
∞
lim
(
x
+
x
)
Limit(x + sqrt(x), x, oo, dir='-')
Detail solution
Let's take the limit
lim
x
→
∞
(
x
+
x
)
\lim_{x \to \infty}\left(\sqrt{x} + x\right)
x
→
∞
lim
(
x
+
x
)
Let's eliminate indeterminateness oo - oo
Multiply and divide by
x
−
x
\sqrt{x} - x
x
−
x
then
lim
x
→
∞
(
x
+
x
)
\lim_{x \to \infty}\left(\sqrt{x} + x\right)
x
→
∞
lim
(
x
+
x
)
=
lim
x
→
∞
(
(
x
−
x
)
(
x
+
x
)
x
−
x
)
\lim_{x \to \infty}\left(\frac{\left(\sqrt{x} - x\right) \left(\sqrt{x} + x\right)}{\sqrt{x} - x}\right)
x
→
∞
lim
(
x
−
x
(
x
−
x
)
(
x
+
x
)
)
=
lim
x
→
∞
(
(
x
)
2
−
(
−
x
)
2
x
−
x
)
\lim_{x \to \infty}\left(\frac{\left(\sqrt{x}\right)^{2} - \left(- x\right)^{2}}{\sqrt{x} - x}\right)
x
→
∞
lim
(
x
−
x
(
x
)
2
−
(
−
x
)
2
)
=
lim
x
→
∞
(
−
x
2
+
x
x
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{2} + x}{\sqrt{x} - x}\right)
x
→
∞
lim
(
x
−
x
−
x
2
+
x
)
=
lim
x
→
∞
(
−
x
2
+
x
x
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{2} + x}{\sqrt{x} - x}\right)
x
→
∞
lim
(
x
−
x
−
x
2
+
x
)
Let's divide numerator and denominator by sqrt(x):
lim
x
→
∞
(
−
x
3
2
+
x
1
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{\frac{3}{2}} + \sqrt{x}}{1 - \sqrt{x}}\right)
x
→
∞
lim
(
1
−
x
−
x
2
3
+
x
)
=
lim
x
→
∞
(
−
x
3
2
+
x
1
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{\frac{3}{2}} + \sqrt{x}}{1 - \sqrt{x}}\right)
x
→
∞
lim
(
1
−
x
−
x
2
3
+
x
)
=
lim
x
→
∞
(
−
x
3
2
+
x
1
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{\frac{3}{2}} + \sqrt{x}}{1 - \sqrt{x}}\right)
x
→
∞
lim
(
1
−
x
−
x
2
3
+
x
)
Do replacement
u
=
1
x
u = \frac{1}{x}
u
=
x
1
then
lim
x
→
∞
(
−
x
3
2
+
x
1
−
x
)
\lim_{x \to \infty}\left(\frac{- x^{\frac{3}{2}} + \sqrt{x}}{1 - \sqrt{x}}\right)
x
→
∞
lim
(
1
−
x
−
x
2
3
+
x
)
=
lim
u
→
0
+
(
−
(
1
u
)
3
2
+
1
u
1
−
1
u
)
\lim_{u \to 0^+}\left(\frac{- \left(\frac{1}{u}\right)^{\frac{3}{2}} + \sqrt{\frac{1}{u}}}{1 - \sqrt{\frac{1}{u}}}\right)
u
→
0
+
lim
1
−
u
1
−
(
u
1
)
2
3
+
u
1
=
=
1
0
−
(
1
0
)
3
2
1
−
1
0
=
∞
\frac{\sqrt{\frac{1}{0}} - \left(\frac{1}{0}\right)^{\frac{3}{2}}}{1 - \sqrt{\frac{1}{0}}} = \infty
1
−
0
1
0
1
−
(
0
1
)
2
3
=
∞
The final answer:
lim
x
→
∞
(
x
+
x
)
=
∞
\lim_{x \to \infty}\left(\sqrt{x} + x\right) = \infty
x
→
∞
lim
(
x
+
x
)
=
∞
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
x
+
x
)
=
∞
\lim_{x \to \infty}\left(\sqrt{x} + x\right) = \infty
x
→
∞
lim
(
x
+
x
)
=
∞
lim
x
→
0
−
(
x
+
x
)
=
0
\lim_{x \to 0^-}\left(\sqrt{x} + x\right) = 0
x
→
0
−
lim
(
x
+
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
+
x
)
=
0
\lim_{x \to 0^+}\left(\sqrt{x} + x\right) = 0
x
→
0
+
lim
(
x
+
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
+
x
)
=
2
\lim_{x \to 1^-}\left(\sqrt{x} + x\right) = 2
x
→
1
−
lim
(
x
+
x
)
=
2
More at x→1 from the left
lim
x
→
1
+
(
x
+
x
)
=
2
\lim_{x \to 1^+}\left(\sqrt{x} + x\right) = 2
x
→
1
+
lim
(
x
+
x
)
=
2
More at x→1 from the right
lim
x
→
−
∞
(
x
+
x
)
=
−
∞
\lim_{x \to -\infty}\left(\sqrt{x} + x\right) = -\infty
x
→
−
∞
lim
(
x
+
x
)
=
−
∞
More at x→-oo
The graph